

Instituto Superior de Estatística e Gestão de Informação Universidade Nova de Lisboa

Master of Science in Geospatial Technologies

Geostatistics Assessment of Spatial Uncertainty with Indicator Geostatistics Carlos Alberto Felgueiras cfelgueiras@isegi.unl.pt

Assessment of Spatial Uncertainty

Contents

Introduction

Estimation versus simulation

Stochastic Simulation

Modeling Spatial Uncertainties

Sequencial Simulation Approachs

Drawing realizations from the ccdfs

The sequential simulation approach

Sequential Gaussian x Sequential Indicator simulators

Estimates and Uncertainties from realization

Account for secondary information on modeling spatial uncertainties

Why account for secondary information

Kriging within Strata

Simple Kriging with varying local means

Indicator Simulation with varying local means

Cokriging

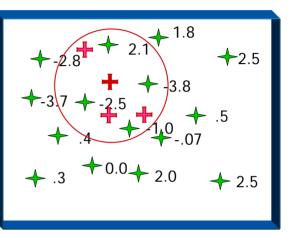
Summary and Conclusions

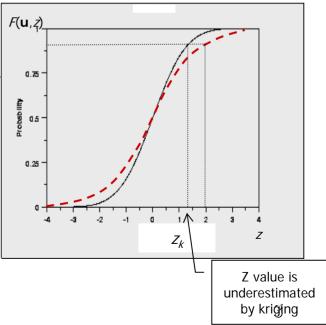
Master of Science in Geoespatial Technologies

- Introduction
- Estimation x Simulation
- Problems with Kriging Estimation:
 - Account only for local samples (not the values already estimated). Consider covariances only with samples.

$$Z^{*}(\mathbf{u}) = \sum_{\alpha=1}^{n(\mathbf{u})} \lambda_{\alpha}(\mathbf{u}) \cdot Z(\mathbf{u}_{\alpha}) + \left[1 - \sum_{\alpha=1}^{n(\mathbf{u})} \lambda_{\alpha}(\mathbf{u})\right] \cdot m$$

- Tend to smooth out local details of the spatial variation of the attribute. (local error variance is minimum.)
- Small values are *overestimated*. Large values are *underestimated* (extreme values problem)
- Estimates appears more variable in densely sampled areas than in sparsely sampled areas





Assessment of Spatial Uncertainty

- Introduction
- Estimation x Simulation Reproducing model statistics
- Stochastic Simulation (Goovaerts, 1997)
 - Generates a map or a realization of *z*-values, say, $\{z^{(l)}(\mathbf{u}), \mathbf{u} \in A\}$ with *l* denoting the *l*th realization.
 - Requisites for simulated maps
 - 1. Data values are honored at their *n* locations

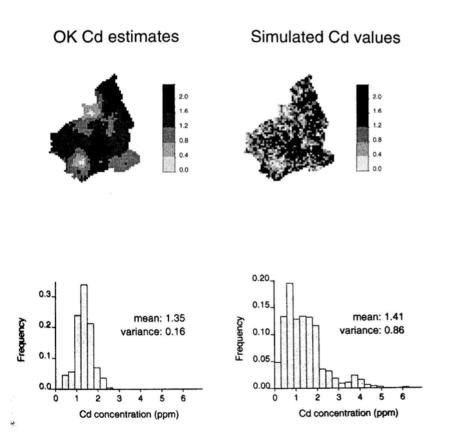
 $z^{(l)}(\mathbf{u}) = z(\mathbf{u}_{\alpha}) \qquad \forall \mathbf{u} = \mathbf{u}_{\alpha}, \alpha = 1, ..., n$

The realization is said to be conditional (to the samples)

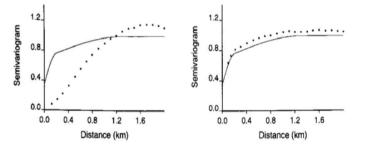
- 2. The histogram of simulated values reproduces closely the declustered sample histogram.
- 3. The covariance model $C(\mathbf{h})$, or better, the set of indicator covariance models $C_{I}(\mathbf{h}; z_{k})$, for various thresholds z_{k} are reproduced.

Assessment of Spatial Uncertainty

Stochastic Simulation (Goovaerts, 1997)



Estimation x Simulation Reproducing model statistics (ilustrations)



Note the smoothing effect of kriging that leads to underestimation of the shortrange variability of Cd values (Goovaerts)

Assessment of Spatial Uncertainty

- Stochastic Simulation (Goovaerts, 1997)
 - Modeling Spatial Uncertainty
 - The multiGaussian and Indicator kriging based algorithms provide a measure only of *local uncertainty* because each conditional cdf relates to a single location \mathbf{u}_i (single-point ccdfs)

$$F(\mathbf{u}_{j}; z_{c}/(n)), j = 1,...,J$$

• The *joint probability*, probability that the *z*-values at *J* locations \mathbf{u}_j are **jointly** no greater than critical threshold z_{cj} is given by:

Prob
$$\{Z(\mathbf{u}_{j}) \leq z_{cj}, j = 1,..., J | (n)\} = F(\mathbf{u}_{1},...,\mathbf{u}_{j}; z_{1},..., z_{j} | (n))$$

• The joint probability may be assessed numerically from a set of *L* realizations of the spatial distribution of z-values over the *J* locations u_{*i*}, that is:

Prob
$$\{Z(\mathbf{u}_j) \le z_{cj}, j = 1,..., J \mid (n)\} \approx \frac{1}{L} \sum_{l=1}^{L} \prod_{j=1}^{J} i^{(l)}(\mathbf{u}_j; z_{cj})$$

- where $i^{(l)}(\mathbf{u}_j; z_c) = 1$ if the simulated z-value at \mathbf{u}_j does not exceed z_c and 0 otherwise.
- Problem: How to draw the L realizations?

<u>ISEGI > NOVA</u>

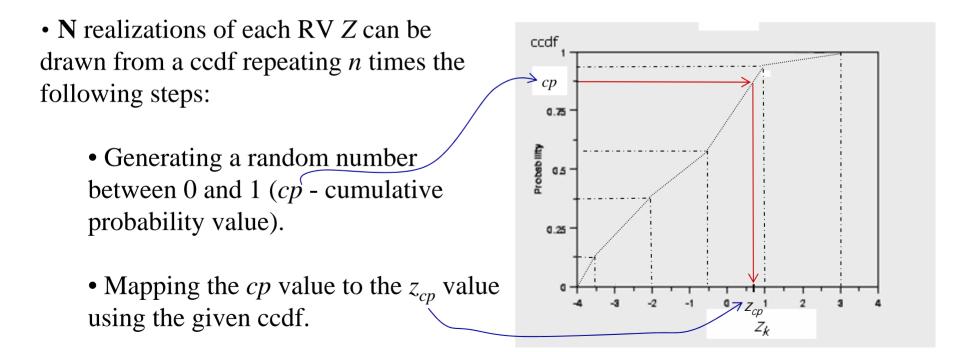
Master of Science in Geoespatial Technologies

- Stochastic Simulation (Goovaerts, 1997)
 - Modeling Spatial Uncertainty Numerical Example (not extensive) with $z_{c1} = z_{c2} = 2$

Realizations		Indicator Values			
Z ₁	Z ₂	$i^{(l)}(\mathbf{u}_{l};z_{c})$	$i^{(l)}(\mathbf{u}_{2};z_{c})$	$\prod_{i=1}^{2} i^{(i)} \left(\mathbf{u}_{j}; z_{c} \right)$	
0.5	1.1	1	1	1	
0.8	1.8	1	1	1	
1.7	2.1	1	0	0	
1.9	2.3	1	0	0	
2.7	1.7	0	1	0	
3.5	2.9	0	0	0	
1.1	1.7	1	1	1	
2.8	2.7	0	0	0	
2.9	1.8	0	1	0	
3.2	2.3	0	0	0	
Correlation 0.717		$Prob(z_1 < z_c) = 5/10 = .5$	$Prob(z_2 < z_c) = 5/10 = .5$	$Prob(z_1 < z_{c1}; z_2 < z_{c2}) = 3/10 = .3$	

Assessment of Spatial Uncertainty

- Stochastic Simulation Drawing realizations from ccdfs
- Simulation: process of drawing realizations from a cumulative (conditioned or not) distribution function. Uses the ccdf and a random number generator.



• Problem: How to obtain the ccdf for spatial uncertainty assessment?

Master of Science in Geoespatial Technologies

Assessment of Spatial Uncertainty

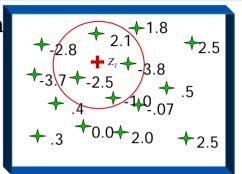
- Stochastic Simulation- The Sequential Simulation Approach
 - Draw a value $z_1^{(l)}$ from the univariated ccdf of Z_1 , Prob $\{Z_1 \le z_1 | (n)\}$, conditioned to the (n) original samples.
 - Update the original sample data set (*n*) to a new information set (*n*+1) :

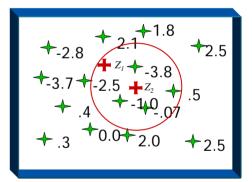
$$(n+1)=(n) \cup \{Z_l = z_l^{(l)}\};$$

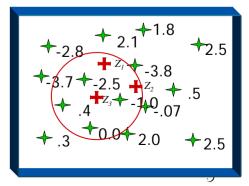
- Draw a new value $z_2^{(l)}$ from the univariated ccdf of Z_2 , Prob $\{Z_2 \le z_2 | (n+1)\}$, conditioned to the information set (n+1):
- Update the information set (n+1) to a new information set (n+2):

 $(n+2)=(n+1) \cup \{Z_2 = Z_2^{(l)}\};$

- Sequentially consider all the J Random Variables Z_j 's.
- Repeat the above sequence for a new *l* realization (up till *L* Random Fields)

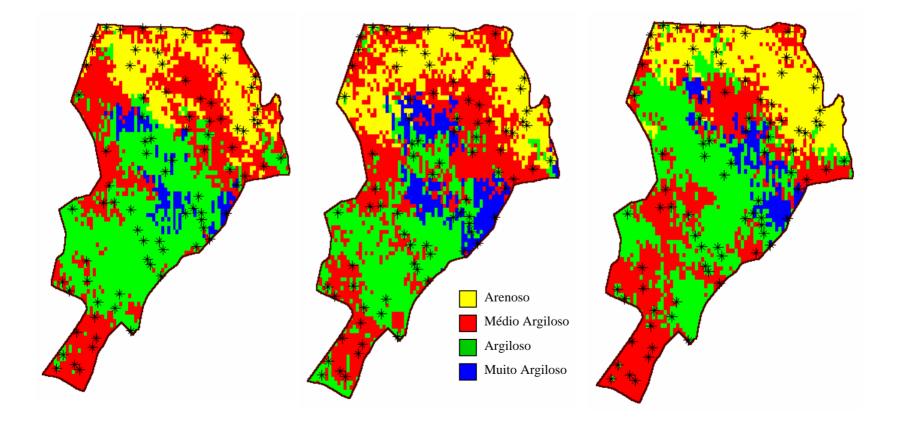






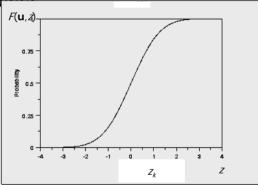
Master of Science in Geoespatial Technologies

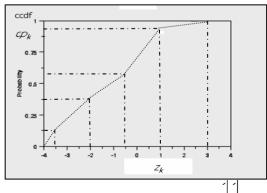
- Introduction Stochastic Simulation (Goovaerts, 1997)
 - Example of simulation fields for categorical variables



- Introduction Stochastic Simulation (Goovaerts, 1997)
 - Sequential Gaussian Simulation x Sequencial Indicator Simulation
 - The sequential simulation principle is independent of the algorithm or model used to establish the sequence of univariate ccdf's
 - see continuation in the pag 124 of the Deutsch book ???
 - Sequential Gaussian Simulation. Parametric.

 Relies on that the ccdf's at each location u is Gaussian (must be checked). The ccdf is determined by the mean and the standard deviation of the distribution.
 - Sequential Indicator Simulation. NonParametric.
 - No assumption on the shape of the ccdf's.
 - Each ccdf is approximated by probabilities is evaluated for K thresholds z_k .





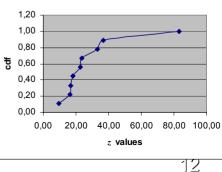
<u>ISEGI > NOVA</u>

Assessment of Spatial Uncertainty

• Estimates and Uncertainties from realizations

- Given a set of *L* realization values at a location **u** it is possible to assess:
- For continuous variables
 - The *mean value* μ : add all values and divide result by *L*.
 - The *variance value* σ^2 : mean value of the squared difference between each value and the mean value μ .
 - The *standard deviation* σ : square root of the variance value
 - The *median value* $q_{.5}$: sorting the values and getting a value that splits the data set in the middle (50% or p=.5).
 - Any q_p quantile: sorting the values and getting a value the split the data set considering the probability p.
 - Confidence intervals with standard deviations or quantiles
 - Cumulative Distribution Function (cdf)

	Realizations		
possible	values	sorted values	cdf
mean = 29.01	22.5	9.6	1/9
1, 1 7	17	16.5	2/9
ult by <i>L</i> .	33.3	17	3/9
ed	36.7	18.4	4/9
¢μ.	18.4	22.5	5/9
iance	23.7	23.7	6/9
	16.5	33.3	7/9
•	83.4	36.7	8/9
ing a	9.6	83.4	1



.

Master of Science in Geoespatial Technologies

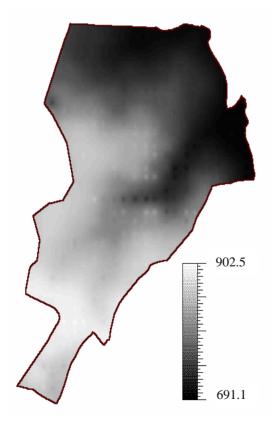
Assessment of Spatial Uncertainty

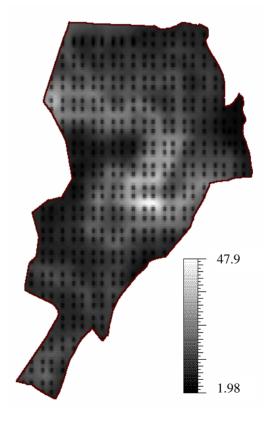
Estimates and Uncertainties from	realizations	Realiza	ations	
			classes	
• Given a set of <i>L</i> realization val	A	В		
assess:	А	В		
 For categorical variables 		S	;	
• pdfs: counting the frequer	cy of each class	S	5	
. Estimates hazed on mode values, for evenuels			В	
• Estimates based on mode values, for example.			В	
 Uncertainties based on the 	S	;		
• Uncertainties based on the	e overall probabilities (Shannon	A	\	
Entropy, for example).		A	В	
	4	class	freq.	
		А	1	
		AB	5	
		S	3	

AB Classes

Assessment of Spatial Uncertainty

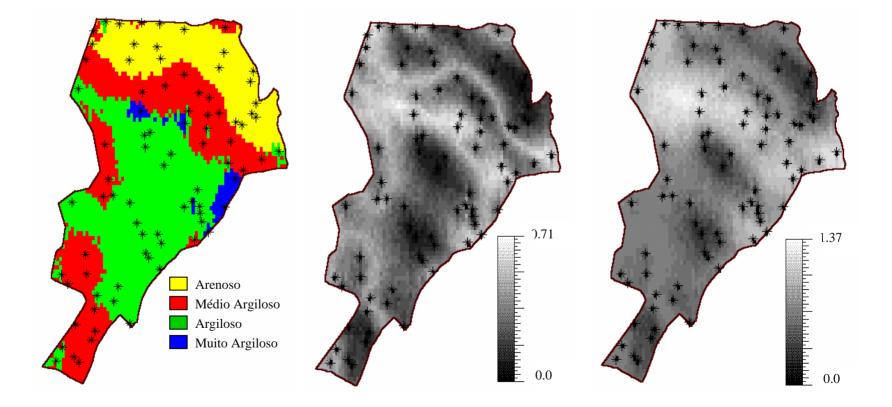
Example of Maps of Estimates and Uncertainties of continuous attributes from realizations.





Assessment of Spatial Uncertainty

Example of Maps of Estimates and Uncertainties of categorical attributes from realizations.



Assessment of Spatial Uncertainty

Accounting for secondary information on modeling spatial uncertainties

Why accounting for secondary information ?

- generally primary data are sparse and poorly correlated in space.
- the estimation can be improved when secondary denser information is taken into consideration.
- Important: the secondary information must be correlated with the primary data

Assessment of Spatial Uncertainty

• Acounting for secondary information in predictions (Goovaerts book)

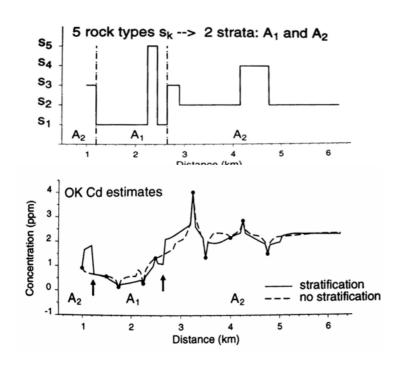
Accounting for Secondary Information in Kriging

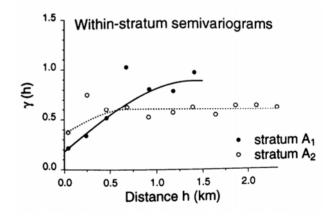
- Exhaustive secondary information (locations \boldsymbol{u} being estimated and \boldsymbol{u}_{α})
 - Kriging within strata
 - Simple kriging with varying local means
 - Kriging with an external drift
 - Co-located kriging

Accounting for Secondary Information in Kriging

- Better sampled secondary information
 - Cokriging
 - Cross semivariogram estimation
 - Linear model of coregionalization
 - Markov models

- Acounting for secondary information in predictions
- Kriging within strata (example Goovaerts)
 - Stratify the study area considering the second information (soil map, for example)
 - Interpolation within each stratum separetely using stratum-specific semivariogram.





Assessment of Spatial Uncertainty

Accounting for secondary information in predictions

• Simple kriging with varying local means

• The know stationary mean m, required by the simple kriging, can be replaced by known estimated varying means $m_{SK}^*(u)$.

$$Z_{SK}^{*}(\boldsymbol{u}) - \mathbf{m} = \sum_{\alpha=1}^{\mathbf{n}(\boldsymbol{u})} \lambda_{\alpha}^{SK}(\boldsymbol{u}) [Z(\boldsymbol{u}_{\alpha}) - \mathbf{m}]$$
$$Z_{SK}^{*}(\boldsymbol{u}) - m_{SK}^{*}(\boldsymbol{u}) = \sum_{\alpha=1}^{\mathbf{n}(\boldsymbol{u})} \lambda_{\alpha}^{SK}(\boldsymbol{u}) [Z(\boldsymbol{u}_{\alpha}) - m_{SK}^{*}(\boldsymbol{u})]$$

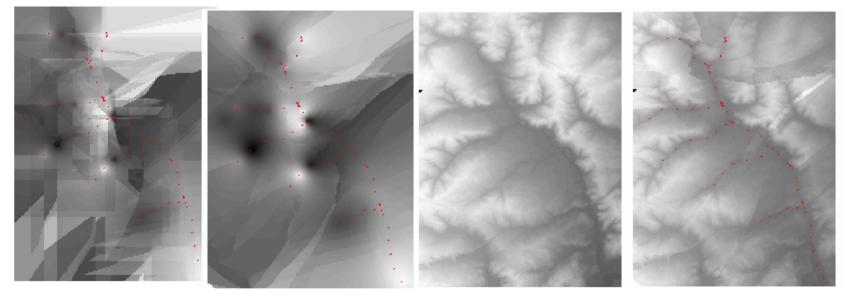
- Different estimates of the primary local mean can be used, depending on the secondary information available.
 - specialist knowledge
 - scattergrams (regression between primary and secondary co-located data)

Master of Science in Geoespatial Technologies

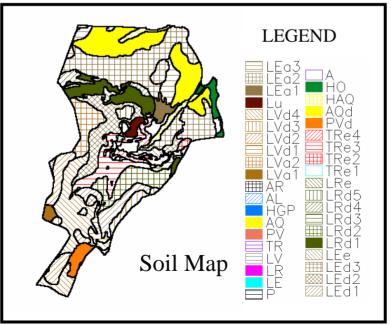
Assessment of Spatial Uncertainty

Accounting for secondary information in predictions

• Simple kriging with varying local means example (modelling flooding information)



- Acounting for soft (imprecise) information in the estimation (indicator simulation with varying local means)
 - The probability a priori for each grid cell is considered. (Soft information)
 - The probability a priori is updated considering the hard data (Bayesian approach)
 - Different estimates of the prob. a priori can be used, depending on the secondary information available.

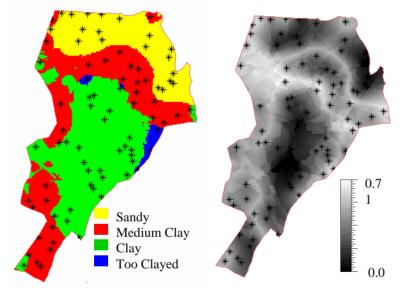


SOLO	ARENOSO	MÉDIO ARGILOSO	ARGILOSO	MUITO ARGILOSO
LVA1	0	0	1	0
LVA2	0	1	0	0
LVD1	0	0	1	0
LVD2	0	0	1	0
LVD3	0	1	0	0
LVD4	0	1	0	0
LU	0	0	1	0
LEA1	0	0.4	0.6	0
LEA2	0	1	0	0
LEA3	0	1	0	0
LED1	0	0	1	0
LED2	0	0	1	0
LED3	0	1	0	0
LEe	0	0	1	0
LRD1	0	0	0	1
LRD2	0	0	0.8	0.2
LRD3	0	0	0.7	0.3
LRD4	0	0	1	0
LRD5	0	0	1	0
LRe	0	0	0.4	0.6
TRe1	0	0	0.4	0.6
TRe2	0	0	0	1
TRe3	0	0	1	0
TRe4	0	0	0.7	0.3
PVd	0	1	0	0
AQd	1	0	0	0
Haq	0.8	0	0.2	0
Но	0	0	1	0
A	0	0	1	0

Assessment of Spatial Uncertainty

Acounting for secondary information in predictions

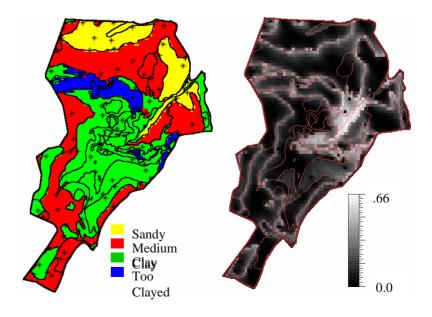
Methodology 3: Indicator Simulation with varying local means



Modeling of soil texture with hard data only

- More detailed information
- Candidate areas for resampling

Modeling of soil texture with hard + soft data



<u>ISEGI>NOVA</u>

- Acounting for secondary information in predictions
 - *Cokriging* Considering Z_1 primary variable and Z_i other variables

$$Z_1^*(\mathbf{u}) - \mathbf{m}_1(\mathbf{u}) = \sum_{\alpha_1=1}^{n_1(\mathbf{u})} \lambda_{\alpha_1}(\mathbf{u}) [Z_1(\mathbf{u}_{\alpha_1}) - \mathbf{m}_1(\mathbf{u}_{\alpha_1})] + \sum_{i=2}^{N_v} \sum_{\alpha_i=1}^{n_i(\mathbf{u})} \lambda_{\alpha_i}(\mathbf{u}) [Z_i(\mathbf{u}_{\alpha_i}) - \mathbf{m}_1(\mathbf{u}_{\alpha_i})]$$

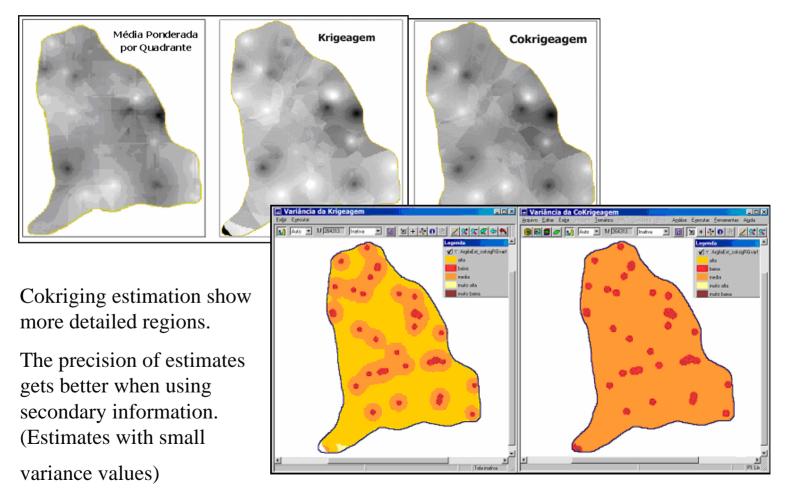
- Variants: simple, ordinary, with trends
- Requires inference of direct and cross semivariograms
- Useful if secondary variables are better sampled and there is reasonable correlation among the variables.

<u>ISEGI > NOVA</u>

Master of Science in Geoespatial Technologies

Assessment of Spatial Uncertainty

• Acounting for secondary information in predictions Cokriging (example)



Assessment of Spatial Uncertainty

Summary and Conclusions

- Local Uncertainties based on estimatings with kriging (and variants) tend to smooth the attribute variability.
- Spatial Uncertainty modeling can be acomplished from sequential simulation approaches
- Spatial Models should be used when the histogram and the Covariance of the samples have to be reproduced
- Secondary variables can be used to improve the uncertainty models generated with geostatistics

Assessment of Spatial Uncertainty

END

of Presentation